Hydraulic Modeling to Inform Flow Management and Habitat Quantity

USGS Oregon Water Science Center James White, Rose Wallick, Gabriel Gordon, Brandon Overstreet USGS/Oregon State University Jim Peterson, Jessica Pease

Many people involved and contributing to study

<u>USGS ORWSC</u>: Laurel Stratton-Garvin, Stewart Rounds, Adam Stonewall, Greg Lind <u>Oregon State University</u>: Tyrell DeWeber

USACE: Rich Piaskowski, Jacob Mcdonald, Greg Taylor, Jeff Balantine, Norman

Buccola

<u>NOAA Fisherie</u>s: Anne Mullan, Diana Dishman <u>ODFW</u>: Luke Whitman, Brian Bangs <u>USGS WFRC</u>: Toby Kock, Russ Perry, Gabe Hansen

Funding provided by US Army Corps of Engineers

Overview

- Background of Willamette River and flow management
- Development of hydraulic model
 - Building a seamless topo-bathymetric DEM
- Development of habitat model
- Preliminary results of habitat modeling
 - Insights to flow-habitat relations and applications
- Next Steps

Background

- 13 USACE flood-control dams in USACE Willamette Valley project
 - Finite amount of stored water
 - Uncertainty in best approach to release stored water
 - Higher Spring flows to aid downstream migration?
 - High, sustained summer flows to manage temperature?
 - Short-duration, higher summer flow to mitigate heat waves?
- 2008 Biological Opinion for USACE's Willamette Valley Project established flow objectives but recommended additional research, monitoring and evaluation to aid in future refinement.
- USGS hydraulic modeling is part of larger effort developing relationships between flow, temperature, physical habitat, and survival to develop real-time flow management tools

Mainstem Willamette River Flow Objectives

Source: Table 2-8 from Biological Opinion for USACE's Willamette Valley Project, NOAA Fisheries, 2008

Time Period	7-Day Moving Average ¹ Minimum Flow at Salem (cfs)	ing Average ¹ Instantaneous Minimum w at Salem (cfs) Flow at Salem (cfs)	
April 1 - 30	17,800	14,300	
May 1 - 31	15,000	12,000	
June 1 - 15	13,000	10,500	4,500
June 16 - 30	8,700	7,000	4,500
July 1 - 31		6,000	4,500
August 1 - 15		6,000	5,000
August 16 - 31		6,500	5,000
September 1 - 30		7,000	5,000
October 1 - 31		7,000	5,000

Building blocks of hydraulic model

Lidar-Sonar Differences Willamette River

Preliminary Results – subject to revision

<u>Approach</u> Withheld 10% of sonar-data to validate interpolation

Combined sonar and lidar data via Triangular Irregular Network (TIN)

Edited TIN to correct obvious interpolation errors

Rasterized TIN via a nearest neighbors approach

Compared raster (bathymetric) surface to withheld points for validation

Interpolation Errors Corvallis to Santiam Confluence

≥USGS

Building blocks of hydraulic model

Building blocks of hydraulic model

Hydraulic model outputs

Hydraulic model outputs

Defining "useable" rearing habitat

Fish habitat = f (depth, velocity, cover, slope, temperature, predation, food...)

et to the to

Defining "useable" rearing habitat

Fish habitat = f(depth, velocity, cover, slope, temperature, predation, food...)

	Species	Size Class	Criteria	Narrow	Median	Broad	
	Chinook salmon	Presmolt (>60mm)	Depth (m)	0.05-0.7	0.15-3.5	0.15-Inf	Data source: (Peterson and others, in progress)
			Velocity (m/s)	0-0.38	0-0.5	0-0.91	
			Bed Slope (degrees)	<40	<55	Any	
Ch sa Ste		Fry (<60mm)	Depth (m)	0.05-0.6	0.05-1.1	0.05-1.5	
	Chinook		Velocity (m/s)	0-0.15	0-0.4	045	
	salmon		Bed Slope (degrees)	<40	<55	Any	
	Steelhead	Presmolt (>60mm)	Depth (m)	0.15-1	0.15-1	0.15-Inf	
			Velocity (m/s)	0-0.53	0-1	0-1.1	
			Bed Slope				

2 species X 2 sizes X 4 habitat definitions X 100+ miles of river = LOTS of data to churn through and summarize

Defining "useable" rearing habitat

Fish habitat = f (depth, velocity, cover, slope, temperature, predation, food...)

Comparing habitat availability in main channel and off-channel areas for different flows

Distribution of Habitat Corvallis to Santiam

Preliminary Results - subject to revision

Preliminary Results - subject to revision

Flow Habitat Relationships

Presmolt Chinook

Preliminary Results - subject to revision

Preliminary results from hydraulic and habitat analysis

- Rearing habitat availability for spring Chinook varies substantially along Willamette River reflecting variation in channel morphology
- Increased discharge does not necessarily result in more physical rearing habitat
 - Sensitivity between flow and habitat availability varies spatially
 - During low flows, more flow may result in a reduction in physical habitat in certain reaches
- Sensitivity to habitat criteria varies spatially and for different lifestages
 - Highlights the importance of sensitivity analysis

Next Steps

A Summer

USGS

Expanding into North Santiam and McKenzie Rivers

Bathymetry is derived from spectral and hydraulic analysis of publicly available imagery (NAIP)

Potential tools to support flow management and habitat restoration

Example Shiny Application where user can define habitat criteria and view maps of habitat availability

Anticipated Products and Timelines

Bathymetry

- Sonar point cloud (anticipated release: Spring, 2019)
- Fused lidar/sonar DEM (anticipated release: Fall, 2019)

Hydraulic models

- Development/calibration continuing through Summer 2019
 - Anticipated release: Fall/Winter, 2019

Habitat models

- Preliminary results to be included in growth, survival, and movement models under development
- Anticipated release: Fall/Winter 2019

Tributary bathymetry and models

Under development (anticipated release: Summer/Fall 2020)

Questions

jameswhite@usgs.gov

Many thanks to

<u>USGS ORWSC</u>: Laurel Stratton-Garvin, Stewart Rounds, Adam Stonewall, Greg Lind <u>Oregon State University</u>: Tyrell DeWeber

USACE: Rich Piaskowski, Jacob Mcdonald, Greg Taylor, Jeff Balantine, Norman

Buccola <u>NOAA Fisherie</u>s: Anne Mullan, Diana Dishman <u>ODFW</u>: Luke Whitman, Brian Bangs <u>USGS WFRC</u>: Toby Kock, Russ Perry, Gabe Hansen

Funding provided by US Army Corps of Engineers

EXTRA SLIDES

Flow Habitat Relationships Presmolt Chinook - Eugene to Harrisburg

Distribution of Habitat Eugene - Harrisburg

Distribution of Habitat Corvallis - Santiam

Flow Habitat Relationships Presmolt Chinook - All

Comparing habitat availability in main channel and off-channel areas for different flows

Preliminary Results - subject to revision

Combined sonar and lidar data via Triangular Irregular Network (TIN)

Edited TIN to correct obvious interpolation errors

Rasterized TIN via a nearest neighbors approach

Compared raster (bathymetric) surface to withheld points for validation

Interpolation Errors

≥USGS

Increasing off-channel (shallow) inundation and depth diversity

Increasing off-channel (shallow) inundation and depth diversity

Preliminary Results – subject to revision